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Physicians spend roughly 2 hours on EMRs for every hour of face-to-face patient care.

26% of physicians meet criteria for burnout
61% identified the EMR as a key contributor

A third of Canadians' mental health care needs are only partially met or not met at aill.
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Thesis Statement

It is possible to more effectively adapt modern Al techniques for mental health applications
that support clinicians by:

(1) quantitatively enhancing early assessment performance through the integration of LLM
embeddings with structured features, and

(2) qualitatively identifying physician’ needs and capturing their cognitive and diagnostic
processes to ensure that Al-driven summaries are presented in a manner consistent with their
practice.
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Thesis Statement

It is possible to more effectively adapt modern Al techniques for mental health applications
that support clinicians by:

(1) Study 1. Augmenting Early Mental Health Assessment Using LLM Embeddings

(2) Study 2: Formulating Physician-aligned Design Guidelines for Al Summarization
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System Overview

(1) Study 1. Augmenting Early Mental Health Assessment Using LLM Embeddings
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Background/Prior Work — Alternative Example

Shao, Yijun et al. (2019). Detection of
probable dementia from EHRs

Ford, Elizabeth et al. (2019). Identifying
undetected dementia in UK primary

care

5

Bowman, Sue (2013). Impact
of EHR systems on information
integrity

Pivovarov et al. (2015).
Automated methods for EHR
summarization.
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Raket, Lars Lau et al.
(2020). DETECT: risk of first
psychosis episode

Luo, Rengian et al. (2022). BioGPT
for biomedical text generation

LLM embeddings to augment
traditional structured features

Yang, Xi et al. (2022). Gatortron Physician user needs assessment
clinical LLM

study

Design guidelines for Al
summarization

I My Coniribution >

Garriga, Roger et al. (2023). Combining notes +
structured EHRs for MH crises

Singhal, Karan et al. (2023). LLMs encode clinical
knowledge

Van Veen, Dave et al. (2024). Adapted LLMs
outperform in clinical summarization
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Study 1: Augmenting Early Mental Health
Assessment Using LLM
Embeddings

 RQT1 - Modality Contribution: What is the incremental benefit of augmenting a structured-
data-only classifier with LLM-derived text embeddings?

« RQ2 - Embedding Dimensionality: How does classification performance change as we vary
the size of the text embeddings?

 RQ3 - Prediction Lead Times: How does model performance evolve when enforcing
different lead times?
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CPCSSN Dataset

A pan-Canadian EMR database comprising routine primary care information including:
1. Demographic Information

2. Clinical Observations and Examination Results:

3. Laboratory Test Results (Biomarkers)

4. Medication Information

5. Encounter Information

6. Allergies and Risk Factors

/. Medical Procedure Information
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CPCSSN Dataset

352,161 total distinct patients

40.8% Male, 59.2% Female

12 distinct healthcare networks (1 held out as unseen test set)

Training set had the following class distribution:
 19.16% patients with MHD

« 80.84% without any MHD
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System Architecture

Structured Feature Extraction Module
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System Architecture
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System Architecture

Prediction Module
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Train MLmodel  ginary classification
of Mental health
assessment

Combine structured
features with LLM
embeddings

« Informed by established
epidemiology and
psychiatric research

o 28 structured features
including variables
encoding:

 Demographics

 Health service
engagement

« Comorbidities

 Medications

* Risk factors

« Multicollinearity (Pearson
correlations > 0.7)

* MICE imputation
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Open-source Qwen 2.5 7B

Clinical Notes
concatenated

Tokenized

Truncated for lead fimes
Embeddings generated
using a cloud GPU
instance

3584-dimensional vectors

Reduced using PCA
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System Architecture
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KNN,
XGB,

LR, ADA, RF,
LGBM

Hyperparameter tuning
using 5-fold cross
validation on AUC

Random Undersampling

10-fold stratified cross-
validation for comparative
analysis

ROC-AUC,
recall, accuracy,
precision, F1

Pairwise t-test with Holm-
Bonferroni correction

e
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Results

Architecture Comparison

Model (128-dims) Accuracy (%) AUC (%) Recall (%) Precision (%) F1 (%)
LR [baseline] 68.76 70.25 58.58 29.26 39.03
KNN 82.17*** 68.37*** 17.53*** 44 46*** 25.14***
ADA 69 .81*** 78.13%** 72.09*** 32.6 1% 449 ¥+
RF 71.42% 80.7 3*** 75.45%** 34.55%** 47 A0
XGB 73.16%** 82.99*** 77.16%** 36.46*** 49 5%
LGBM 73 47*** 83.37*** 77 59%** 36.84*** 49 9 5¥**
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Results

RQ1 - Modality Contribution
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Results

RQZ2 - Embedding Dimensionality

Model (dimensions) Accuracy (%) AUC (%)
LGBM (128)
[baseline] /3.47 83.37
LGBM (256) 73.31** 83.24**
LGBM (512) 73.1 1% 83.04***

Dalla Lana

School of Public Health

Recall (%)

77.59
77.82
77 .41

Precision (%) F1 (%)
36.84 49.95
36.71* 49.88

36.45%** 49 56***
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Results

RQ3 - Prediction Lead Times

Model (lead fime in
months)

Accuracy (%) AUC (%) Recall (%) Precision (%) F1 (%)

LGBM (0) [baseline]

LGBM (3)
LGBM (4)
LGBM (12)

73.47
72.40"**
72.39%**
72.55"**

83.37
82.71**
82.79*
82.96**

77.59
77.69
/7.87
77.69

36.84
31.58***
30.48***
28.89***

49.95
44 90**
43.81***
42.12%**
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Results

Unseen test set

Dataset Accuracy (%)
Train set 10-fold CV /3.47
Holdout test set /3.51

Dalla Lana
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AUC (%) Recall (%) Precision (%) F1 (%)
83.37 77.59 36.84 4995
83.23 77 .65 36.88 50.01
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Study 2: Formulating Physician-aligned Design
Guidelines for Al Summarization

We set out to elicit physician perspectives across 3 domain:

« Data Priority: The prioritization of clinical data within EMRs to understand patient profiles
during consultation

« Summary Structure: The preferred sequence and format for Al-generated patient summaries

« Value Proposition of Al: The perceived value and utility of Al-generated summaries in
Improving clinical workflows

Dalla Lana & UNIVERSITY OF TORONTO
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Study 2: Formulating Physician-aligned Design
Guidelines for Al Summarization

« Feasibility Pilot Study
* Designing a Scenario and a physician EMR interface
« Revising Study Protocol

 User Needs Assessment Study

Dalla Lana S UNIVERSITY OF TORONTO
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Feasibility Pilot Study

* A licensed physician with 30 years of clinical experience

« Scrollable PDFs

* Review the EMRs and synthesize into clinically meaningful summaries

* Think aloud and voice any concerns regarding the study protocol

* Importance of Presenting Complaint (Scenario)

 Need for an interactive interface (along with a reference production EMR)

« Information Seeking Behavior and Ideal Summary Structure

+ Information fatigue synthesizing multiple patient records
Dalla Lana
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Designing a Scenario

 New patient presenting with anxiety issues
« Limiting synthesis to a single patient record to mitigate cognitive overload.
« A patient from CPCSSN who developed anxiety at a later stage of their medical history

« Patient has been flagged to be at risk of Mental Health Disorders by our early
screening model.

« Physicians presented with medical records up to, but not including, the first recorded
mental health diagnosis.

Dalla Lana & UNIVERSITY OF TORONTO
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Designing a Physician EMR Ul

Closely modeled after the reference production EMR using Figma

Patient Name: Emily Jones Patient Age: 41 years Patient DOB: 06-25-1967 Patient Gender: Female
Adam Smith {The Doctor’s office at Canada Plaza v J
FHG Status: Enrolled - Dr. Adam Smith (Canada Plaza)
Encounter Notes Virtual Chart Medications
Patient (&  Emily Jones v Filter - All Items - v Providers - All - v
Past
Scheduler Aug 18, 2008 at 7:00pm *Walk In Encounter v EE ®
Walk In = X =
A.Smith (Canada Plaza) Aug 18,2008:  *Walk in Encounter @Q ¥ History of Problems (+ )74
classical migraine* Provider: Smith (Canada Plaza), Adam
Aug 18,2008 Classical migraine*
Aug 18, 2008 at 7:00pm
Patients Walk In = " "
A.Smith (Canada Plaza) Aug 18,2008:  *Walk in Encounter X Aug 18,2004  Varicose veins, leg*
Ia dysplasia of cervix Provider: Smith (Canada Plaza), Adam
Documents Dec 10,2003 MVA
Jul 30,2008:  *Walk in Encounter &3 : T 3
@ Provider: Smith (Canada Plaza), Adam P Active Medications o v E
Claims
P External Medications (+)
Jan 17,2008:  *Walk in Encounter & w Surgical/Medical History (+]
Provider: Smith (Canada Plaza), Adam
eOe Jun 12,2006 Myringotomy tubes
aan
Wait List 9
Jan 17,2008:  *Walk in Encounter X P Allergies (+]
Provider: Smith (Canada Plaza), Adam
i » Immunization Schedule V4
E . y P Immunization Summary o
Mail
Labs v Ww Lifestyle (+]
Tasks D None Recorded Aug 18,2008 Diet - Regular
Documents Aug 18,2008  Exercise - 4/week CVe
Labs Aua 18, 2008 Uncoded smoking
@ 918, - previous
1 2 i ® e o =] i i i A 5 0 ,
New Message New Task Wi Lab Req Sick Note Rx Supplies Physio MCI Referral CMIReq Trinity Req TCMI Req PHL General PHLHIV PHLSTI

Dalla Lana 2
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Study Protocol

2 phases

 Phase 1:
Semi Structured sessions (N=3) involving:
« Demographic & Background Survey
 EMR Review with Think-Aloud
« Post-Task Questionnaire

 Phase 2:

Outside the scope of this thesis but included to inform future direction:

« Blind Quality Assessment using an adapted PDQI-10 scale

« Usefulness & Acceptance Survey using UTAUT validated scale

Dalla Lana

School of Public Health
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Analysis Approach

Transcribe interview transcripts
Develop Codebook

2 independent coders apply codebook to transcripts

« A third independent coder conducts consensus coding for codes with Kk < 0.8

Develop themes from the codes using a semi-deductive approach
3 themes emerged:
1. Information Seeking Behavior

2. Summary Structure
3. Value Proposition of Al

Dalla Lana

School of Public Health
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Theme 1. Information Seeking Behavior

 Prioritization of Demographics and Past Medical History
* Filtering By Presenting Complaint

* Lab Results and Allergies are Context Dependent

Dalla Lana

School of Public Health
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Theme 1. Information Seeking Behavior

 Prioritization of Demographics and Past Medical History

« Physicians anchor clinical orientation by immediately referring to the
demographics section at the top

« Followed by patient's medical case history (chronic illnesses,
major diagnoses and surgical and medical hospitalizations)

« k=1 for"seeks demographics" and "seeks past medical history"

- Filtering By Presenting Complaint

* Lab Results and Allergies are Context Dependent

Dalla Lana

School of Public Health
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Theme 1. Information Seeking Behavior

 Prioritization of Demographics and Past Medical History

Relative Interaction Frequency

- Filtering By Presenting Complaint ’
« High frequency of code "filters for presenting complaint”

« Intferaction paftterns show filtering done on 2 key sources:

= Encounter notes & medications (>50% of interactions)
= At least a third of review time dedicatfion to Encounter

tab alone V
 Filtering might lead to physician inadvertently overlooking

cues nOT eprICITIy |Inked TO presenﬂng COmpl(]inT = Encounters tab  ® Medications tab Virtual tab = Right panel

* Lab Results and Allergies are Context Dependent

Dalla Lana

School of Public Health
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Theme 1. Information Seeking Behavior

 Prioritization of Demographics and Past Medical History

Relative Interaction Frequency

- Filtering By Presenting Complaint ’
« High frequency of code "filters for presenting complaint”

« Intferaction paftterns show filtering done on 2 key sources:

= Encounter notes & medications|(>50% of interactions)
= At least a third of review time dedicafion To Encounter

tab alone V@
 Filtering might lead to physician inadvertently overlooking

-

cues nOT eprICITIy |Inked TO presenﬂng COmpl(]inT = Encounters tab  ® Medications tab Virtual tab = Right panel

* Lab Results and Allergies are Context Dependent
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Theme 1. Information Seeking Behavior

 Prioritization of Demographics and Past Medical History

Relative Interaction Frequency

- Filtering By Presenting Complaint ’
« High frequency of code "filters for presenting complaint”

« Intferaction paftterns show filtering done on 2 key sources:

= Encounter notes & medications (>50% of interactions)
= Afleast afthird of review time|dedication to Encounter

tab alone V
 Filtering might lead to physician inadvertently overlooking

(=

cues nOT eprICITIy |Inked TO presenﬂng COmpl(]inT = Encounters tab  ® Medications tab Virtual tab = Right panel

* Lab Results and Allergies are Context Dependent
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Theme 1. Information Seeking Behavior

 Prioritization of Demographics and Past Medical History
- Filtering By Presenting Complaint

* Lab Results and Allergies are Context Dependent

« Only 1 of 3 physicians inferacted with the Allergy section
« Average engagement with virtual tab was below 7 secs

« Some physicians preferred real-time review:

"I get most of my benefit doing that (reviewing lab
results) with the patient while I'm in the room with

them and able to share my screen..."

Dalla Lana

School of Public Health
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Theme 2: Summary Structure

- Recency
* Preference of Structure Over Paragraphs

* Information Priority

Dalla Lana

School of Public Health
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Theme 2: Summary Structure

- Recency

« High frequency of the code "prioritizes recent info"

"I'm going to be looking back one or two visits....The last
year 1s the most important..."

* Preference of Structure Over Paragraphs

* Information Priority

Dalla Lana

School of Public Health
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Theme 2: Summary Structure

- Recency

* Preference of Structure Over Paragraphs

« "Yeah, I would like 1t (the summary) separated into
sections"”

« "Like bullet points. So not paragraphs, but just

Tike ... can you summarize this patient in eight
Tines Tike 8 short statements?"

* Information Priority

Dalla Lana

School of Public Health
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Theme 2: Summary Structure

« Recency

* Preference of Structure Over Paragraphs

* Information Priority

Participant ID Sequence of Information Expected In a Good Summary (priority decreases left-to-right)

Fl Demographics Past medical history Encounters Medications Lab results
Past medical history Medications (active Lab results

P Demographics (chronic illnesses) Medical Procedures medications) (abnormal)

Lab results (context

dependent)
Allergies (when (specifically looks for
P2 Past medical history Encounters Medications prescribing) trends)

Allergies (when
P3 Demographics Encounters Medications Lab results prescribing)

Dalla Lana

School of Public Health
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Theme 2: Summary Structure

- Recency

* Preference of Structure Over Paragraphs

* Information Priority

Participant ID Sequence of Information Expected In a Good Summary (priority decreases left-to-right)

F1 Demographics Past medical history Encounters Medications Lab results
Past medical history Medications (active Lab results

P Demographics (chronic illnesses) Medical Procedures medications) (abnormal)

Lab results (context

dependent)
Allergies (when (specifically looks for
P2 Past medical history Encounters Medications prescribing) trends)

Allergies (when
P3 Demographics Encounters Medications Lab results prescribing)
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Theme 2: Summary Structure

- Recency

* Preference of Structure Over Paragraphs

* Information Priority

Participant ID Sequence of Information Expected In a Good Summary (priority decreases left-to-right)

F1 Demographics Past medical history |Encounters Medications Lab results
Past medical history Medications (active Lab results

P Demographics (chronic ilinesses) Medical Procedures medications) (abnormal)

Lab results (context

dependent)
Allergies (when (specifically looks for
P2 Past medical history Encounters Medications prescribing) trends)

Allergies (when
P3 Demographics Encounters Medications Lab results prescribing)
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Theme 2: Summary Structure

« Recency

* Preference of Structure Over Paragraphs

* Information Priority

Participant ID Sequence of Information Expected In a Good Summary (priority decreases left-to-right)

F1 Demographics Past medical history | Encounters Medications Lab results
Past medical history Medications (active Lab results

P Demographics (chronic illnesses) Medical Procedures medications) (abnormal)

Lab results (context

dependent)
Allergies (when (specifically looks for
P2 Past medical history Encounters Medications prescribing) trends)

Allergies (when
P3 Demographics Encounters Medications Lab results prescribing)
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Theme 2: Summary Structure

- Recency

* Preference of Structure Over Paragraphs

* Information Priority

Participant ID Sequence of Information Expected In a Good Summary (priority decreases left-to-right)

Fl Demographics Past medical history Encounters Medications Lab results
Past medical history Medications (active |Lab results

P Demographics (chronic ilinesses) Medical Procedures |medications) (abnormal)

Lab results (context

dependent)
Allergies (when (specifically looks for
P2 Past medical history Encounters Medications prescribing) trends)

Allergies (when
P3 Demographics Encounters Medications Lab results prescribing)
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Theme 2: Summary Structure

- Recency

* Preference of Structure Over Paragraphs

* Information Priority

Participant ID Sequence of Information Expected In a Good Summary (priority decreases left-to-right)

Fl Demographics Past medical history Encounters Medications Lab results
Past medical history Medications (active |Lab results

P Demographics (chronic illnesses) Medical Procedures medications) (abnormal)

Lab results (context

dependent)
Allergies (when (specifically looks for
P2 Past medical history Encounters Medications prescribing) trends)

Allergies (when
P3 Demographics Encounters Medications Lab results prescribing)

Dalla Lana

School of Public Health

IIIIII UNIVERSITY OF TORONTO
XY DALLA LANA SCHOOL or PUBLIC HEALTH
o

44



Theme 3: Value Proposition of Al

* Interface Complexity

e Need for Al summaries
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Theme 3: Value Proposition of Al

* Interface Complexity

« Information retrieval is tedious and fime consuming:

"I find 1t (the EMR they routinely use) super hard and the

filtering options are also complex and not easy to do ... I
find the workflows (for information retrieval) in it really
clunky and difficult ..."

 EMR structures can actively deter physicians from exploring
potentially relevant data:

"If there was more information, if I had to scroll through
multiple windows to see everything, click into notes—that
really becomes a lot more time consuming, right? ... I will
avoid doing that if I don't need to."

e Need for Al summaries
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Theme 3: Value Proposition of Al

* Interface Complexity

e Need for Al summaries

« "OK, 1t would be great if I didn't have to look through all
this stuff and if when I open the chart, I immediately saw the
summary that we just described..."”

« "I think with [an AI] summary tool, focusing on that approach
that I kind of outlined and generating that kind of summary, I
personally would find that to be helpful ... I mean, it might
just save me a few clicks in terms of having to go through and
collect all that information myself and then sort of storing
it in my memory while I talk to the patient, right? ... That's
the value proposition.”
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Study Implications

Physicians prefer a structured summary

Demographic information and presenting complaint provide anchors

Medical history including chronic ilinesses, major diagnoses, and surgical and
medical hospitalizations are prioritized

Encounters and Medications are then reviewed filtered by presenting complaint.
Recent information is given priority.
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Study Implications

You are an experienced physician. Given the longitudinal EMR information
presented to you, generate a structured summary of the patient's records
(ideally using bullet points). Include the sections outlined below.
Organize the summary using the following headings, in order:

« Demographic information and presenting complaint provide anchors

« Medical history including chronic illnesses, major diagnoses, and surgical and
medical hospitalizations are prioritized

« Encounters and Medications are then reviewed filtered by presenting complaint.
Recent information is given priority.
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Study Implications

You are an experienced physician. Given the longitudinal EMR information
presented to you, generate a structured summary of the patient's records
(ideally using bullet points). Include the sections outlined below.
Organize the summary using the following headings, in order:

1. Demographic Information (include age, sex, and the presenting complaint)

« Medical history including chronic illnesses, major diagnoses, and surgical and
medical hospitalizations are prioritized

« Encounters and Medications are then reviewed filtered by presenting complaint.
Recent information is given priority.
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Study Implications

You are an experienced physician. Given the longitudinal EMR information
presented to you, generate a structured summary of the patient's records
(ideally using bullet points). Include the sections outlined below.
Organize the summary using the following headings, in order:

1. Demographic Information (include age, sex, and the presenting complaint)

2. Past Medical History (include chronic illnesses, major diagnoses, and
surgical and medical hospitalizations)

« Encounters and Medications are then reviewed filtered by presenting complaint.
Recent information is given priority.
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Study Implications

You are an experienced physician. Given the longitudinal EMR information
presented to you, generate a structured summary of the patient's records
(ideally using bullet points). Include the sections outlined below.
Organize the summary using the following headings, in order:

1. Demographic Information (include age, sex, and the presenting complaint)

2. Past Medical History (include chronic illnesses, major diagnoses, and
surgical and medical hospitalizations)

3. Most Recent Encounters and Medications (emphasize content relevant to the
presenting complaint)
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Summarization Outputs Pre- and Post- Physician-
Informed Prompt Engineering

Manual Physician-
written Summary

Conventional Al-
generated Summary

Physician-informed Al-generated Summary

48 year old Female.
Patient is presenting for
an anxiety issue.

Quick scan of chart for
other visits for anxiety
in the last three to four
visits shows nothing
related.

Visits have been for
migraine, cervical
dysplasia and skin
lTesions.

A quick assessment of
medications shows no
psychoctive drugs, and
patient summary is not
elucidating any red flags
for anxiety.

Prompt: You are am expert
medical professional.
Summarize the medical
records into a concise
clinical note.

Response: The medical
records document various
health conditions
including classical
migraine and dysplasia of
the cervix, along with
risk factors such as
previous smoking and
social alcohol use. The
patient has been
prescribed contraceptive
medication multiple times
for extended periods and
has undergone
gynecological examinations
and procedures like
myringotomy tubes.

Demographic Information

Age: 48 years old

Sex: Female

Presenting Complaint: Anxiety

Past Medical History

Chronic Illnesses:

- Classical migraine (diagnosed on 2008-08-18)

- Dysplasia of cervix (diagnosed in multiple instances)

Major Diagnoses / Surgical and Medical hospitalizations:

- Varicose veins, leg (onset in 2004)

- Motor vehicle accident (MVA) (in 2003)

- History of high-risk sexual behavior and HPV infection

Most Recent Encounters and Medications

Encounters:

- On 2008-08-18, the patient was diagnosed with classical migraine¥*.

Medications:

- Oral contraceptive pills 1like TRIPHASIL 21 TAB were prescribed on multiple
occasions from 2005 to 2007.

Additional Notes

The patient has a detailed health record with multiple gynecological issues and past
medical history. The recent encounter on 2008-08-18 highlighted the presence of
classical migraine. Given her history, it is important to consider this diagnosis
in relation to her current presentation of anxiety, as both conditions can have
overlapping symptoms or be influenced by similar factors such as stress and hormonal
changes
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Summarization Outputs Pre- and Post- Physician-
Informed Prompt Engineering

Manual Physician-
written Summary

Conventional Al-
generated Summary

Physician-informed Al-generated Summary

48 year old Female.
Patient is presenting for
an anxiety issue.

Quick scan of chart for
other visits for anxiety
in the last three to four
visits shows nothing
related.

Visits have been for
migraine, cervical
dysplasia and skin
lTesions.

A quick assessment of
medications shows no
psychoctive drugs, and
patient summary is not
elucidating any red flags
for anxiety.

Prompt: You are am expert
medical professional.
Summarize the medical
records into a concise
clinical note.

Response: The medical
records document various
health conditions
including classical
migraine and dysplasia of
the cervix, along with
risk factors such as
previous smoking and
social alcohol use. The
patient has been
prescribed contraceptive
medication multiple times
for extended periods and
has undergone
gynecological examinations
and procedures like
myringotomy tubes.

Demographic Information

Age: 48 years old

Sex: Female

Presenting Complaint: Anxiety

Past Medical History

Chronic Illnesses:

- Classical migraine (diagnosed on 2008-08-18)

- Dysplasia of cervix (diagnosed in multiple instances)
Major Diagnoses / Surgical and Medical hospitalizations:
- Varicose veins, leg (onset in 2004)

- Motor vehicle accident (MVA) (in 2003)

- History of high-risk sexual behavior and HPV infection

Most Recent Encounters and Medications
Encounters:

- On 2008-08-18, the patient was diagnosed with classical migraine¥*.

Medications:

- Oral contraceptive pills Tlike TRIPHASIL 21 TAB were prescribed on multiple

occasions from 2005 to 2007.

Additional Notes

The patient has a detailed health record with multiple gynecological issues and past
medical history. The recent encounter on 2008-08-18 highlighted the presence of
classical migraine. Given her history, it is important to consider this diagnosis

in relation to her current presentation of anxiety, as both conditions can have
overlapping symptoms or be influenced by similar factors such as stress and hormonal

changes
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Limitations

PCA dimensionality reduction (linear tfransformations)

* Exclusively the Qwen 2.5 architecture

« Retrospective study (association rather than causal inferences)
« Exclusively interviewed family physicians

 Single production EMR (Accuro) as reference

« Some static interface components constrained physician workflows
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Future Work

« Exploring additional LLM architectures
« Expanding User Studies Across Specialties and EMR Platforms
« Evaluation of the Clinical Utility and Quality of Generated Summaries

* Fine-Tuning LLMs with Physician Expertise
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Key Takeaways

Demonstrated the value of augmenting structured EMR features with LLM-derived embeddings

of unstructured clinical text

 Conducted a user needs assessment study 1o gain insights on physician requirements,
expectations, and underlying cognitive models involved in the review and synthesis of EMRS

« Laid down a set of design principles incorporating physician feedback

« Established a methodological foundation for gathering and synthesizing physician feedback

« Taken together, we can leverage risk signals from the early assessment study to surface relevant

clinical information using a physician-informed structure based on our design guidelines

Reducing information overload and streamlining the clinical decision-making process
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