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Background

Time Dependent Covariates (TDCs)

• Survival outcomes are often influenced by covariates that 
change over time

• These need to be accounted for correctly to make valid 
predictions on patient survival.

Extended Cox Model

• Traditional models like the extended Cox model handle

TDCs naturally but rely on strict assumptions about 
underlying data structure (Therneau & Grambsch, 2000).

ML Methods & Landmarking

• Machine learning methods offer greater flexibility but are 
typically designed for static data. 

• Landmarking takes snapshots of the data at given time 
points to create multiple “pseudo-baseline” datasets (van 
Houwelingen, 2007).

• This allows static ML models to be applied to time-
dependent covariates by treating each landmark time as a 
new prediction task.

Objectives

• Evaluate how well machine learning models handle time-
dependent covariates when adapted through landmarking.

• Compare the predictive performance of:

➢ Extended Cox proportional hazards model

➢ Random Survival Forests (RSF)

➢ Gradient Boosted Survival Trees (GBST)

• Assess model performance using Harrell’s C-index across 
varying data-generating conditions in a controlled 
simulation study.

Methods

Data Generating Mechanism (DGM)

We simulated longitudinal survival data for n = 500 
individuals, each followed for up to 5 time units. Covariates 
included:

• Baseline: 𝑎𝑔𝑒 ~ 𝑁(60, 10)
𝑥1 ~ 𝑁(0, 2)

• Time-dependent:

𝑥𝑡𝑑1 𝑡 = sin(2𝜋 𝑡 + 𝛿𝑖 ) + 𝜖𝑖 , where:

▪ 𝛿𝑖 is the individual specific noise

▪ 𝜖𝑖 ~ 𝑁(0, 1) if high noise is enabled

• Additional Z noise parameters, optional

• 3200 datasets were generated from a full factorial design (4 
factors × 200 replicates).

• Event times were generated via inverse cumulative hazard 
sampling

• Censoring times were drawn uniformly between 2.5 and 5
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Overall Performance

Figure 1. Flowchart illustrating the full study pipeline from data simulation to model 

evaluation. Note that only three landmarking times were depicted for clarity.

TDC Handling & Landmarking

• Snapshots were created at t = 0.5, 1.0, 1.5, …, 4.5 including 
only individuals still at risk. Prediction time was 1.0 unit.

• Separate RSF and GBST models were fit at each time point to 
predict survival beyond the landmark.

Models

• Extended Cox

Fit using counting process notation (start–stop format). The 
hazard is modeled as:

ℎ𝑖 𝑡 =  ℎ0 𝑡 exp(𝛽𝑇𝑥𝑖 𝑡 )

• Random Survival Forests

An ensemble of decision trees using bootstrapped samples 
and log-rank splitting. Captures nonlinearity and interactions 
automatically.

• Gradient Boosted Survival Trees

Sequentially builds trees to minimize a loss function related 
to survival (C-index). Offers high predictive accuracy.

Table 2. Comparison of models used.

Evaluation

• Predictive performance assessed using Harrell’s C-index 

• For RSF and GBST, C-index was computed at each landmark

• Monte Carlo Error (MCE) was used to quantify precision 
across 200 replicates per setting
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Summary

GBST1 RSF2 RSF3GBST2 GBST3

GSBT Averaged 

C-Index

Factor Levels

Nonlinearity Linear (𝑥1) /Nonlinear (𝑥1
2) 

Noise in 𝑥𝑡𝑑1 𝑡 Low/High

Interaction Absent/Present (𝑥1∙ 𝑥𝑡𝑑1 𝑡 )

Nuisance parameters 0/10 unrelated baseline covariates

Model Type
Handles 

TDCs

Nonlinearity & 

Interactions
Interpretability

CoxPH Semi-

parametric

Directly Requires 

manual 

specification

High

RSF Tree 

ensemble

Landmarking Automatic Moderate

GBST Boosted 

trees

Landmarking Automatic Low

Study Design Overview

Model Avg C-Index MCE

CoxPH 0.798 ±  0.0631 0.0011

GBST 0.972 ±  0.0241 0.0004

RSF 0.933 ±  0.0308 0.0005

Table 1. Simulation factors augmentable during data generation step.

Figure 2. Distribution of Harrell’s C-index across each dataset by model.

Table 3. Average C-index and Monte Carlo error (MCE) for each model

• CoxPH 
consistently 
underperformed 
compared to ML 
models across all 
conditions.

• ML performance 
declined at later 
landmark times, 
with many 
datasets skipped 
at t = 4.0 and t = 
4.5 due to 
insufficient 
follow-up.

Performance Under Varying Data Conditions

Figure 3. Average Harrell’s C-index for each model across 16 factorial simulation 

settings, varying in nonlinearity (NL), interaction (I), noise (HN), and presence of 

extra covariates..

• Model performance remained stable for RSF and GBST, 
regardless of added complexity.

• CoxPH performance degraded in scenarios with 
nonlinearity and high noise.

• CoxPH is interpretable but degrades with nonlinearity and 
noise.

• RSF is robust and stable across all conditions with low MCE.

• GBST offers high accuracy but at higher computational cost.

• Landmarking enables flexible use of ML models with TDCs, 
but care must be taken at later timepoints due to sample 
attrition.
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