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Table 1. Simulation factors augmentable during data generation step.

Nonlinearity Linear (x,) /Nonlinear (x;%)
Low/High

Absent/Present (x;: x;41(t))

0/10 unrelated baseline covariates

Background

Overall Performance

Time Dependent Covariates (TDCs) Noise in x¢q; (t)

* Survival outcomes are often influenced by covariates that
change over time

Table 3. Average C-index and Monte Carlo error (MCE) for each model

Model | Avg C-Index * CoxPH

Interaction
Nuisance parameters

. CoxPH 0.798 + 0.0631 0.0011 consistently
. Thes.e r}eed to be a.ccounted. for correctly to make valid Study Design Overview GBST 0972+ 00241 0.0004 underperformed
predictions on patient survival. (D o P ~N Simulated RSE 0933 + 0.0308 0.0005 compared to ML
Extended Cox Model (True/False) counting models across all
. . Interaction process dataset 1.0 conditions.
* Traditional models like the extended Cox model handle Nonlinear B e e
TDCs naturally but rely on strict assumptions about Adgditiontal nuisance o * ML performance
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underlying data structure (Therneau & Grambsch, 2000). " J declined at later
. e os ° landmark times,
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* Machine learning methods offer greater flexibility but are datasets skipped
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typically designed for static data. snapshot snapshot snapshot att=4.0and t =
* Landmarking takes snapshots of the data at given time 08 4.5 du.e to
points to create multiple “pseudo-baseline” datasets (van R Model insufficient
HOUW@lingen, 2007) Model EE Extended Cox EE GBST ES RSF fOHOW_up'
* This allows static ML, models to be applied to time- Figure 2. Distribution of Harrell’'s C-index across each dataset by model.
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dependent covariates by treating each landmark time as a
new prediction task.

Performance Under Varying Data Conditions
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O bJ eCt IVES Figure 1. Flowchart illustrating the full study pipeline from data simulation to model N _
evaluation. Note that only three landmarking times were depicted for clarity. NL_HN_Extravar
NL_HN _
* Evaluate how well machine learning models handle time- TDC Handling & Landmarking o NL_Extravar Avg C-index
dependent covariates when adapted through landmarking. * Snapshots were created at t = 0.5, 1.0, 1.5, ..., 4.5 including “Settinga L L 09
. only individuals still at risk. Prediction time was 1.0 unit. (Coded) =7 = . 08
* Compare the predictive performance of: . . . L_ILHN e
. * Separate RSF and GBST models were fit at each time point to LI Extravar I
» Extended Cox proportional hazards model predict survival beyond the landmark. L) D
» Random Survival Forests (RSF) AN ExtraVar I
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* Assess model performance using Harrell’s C-index across
varying data-generating conditions in a controlled
simulation study.

Fit using counting process notation (start-stop format). The
hazard is modeled as:

hi(t) = ho(®)exp(BTx;(t))
* Random Survival Forests

Extended Cox GBST RSF
Model

Figure 3. Average Harrell’'s C-index for each model across 16 factorial simulation
settings, varying in nonlinearity (NL), interaction (I), noise (HN), and presence of
extra covariates..

* Model performance remained stable for RSF and GBST,

An ensemble of decision trees using bootstrapped samples _
regardless of added complexity.

and log-rank splitting. Captures nonlinearity and interactions

Methods

automatically. * CoxPH performance degraded in scenarios with
Data Generating Mechanism (DGM) e Gradient Boosted Survival Trees nonlinearity and high noise.
We.si.mulated longitudinal survival da’Fa for n= 500 . Sequentially builds trees to minimize a loss function related _
}nd1V1duals, each followed for up to 5 time units. Covariates to survival (C-index). Offers high predictive accuracy. Conclusion
included: Table 2. Comparison of models used.
* DBaseline: age ~ N(60,10)

x, ~ N(0,2)

Handles Nonlinearity & - * CoxPH is interpretable but degrades with nonlinearity and
Model |Type : Interpretability :
TDCs Interactions noise.

* Time-dependent:

CoxPH Semi- Directly Requires High * RSF is robust and stable across all conditions with low MCE.
Xea1(t) = sin(2m(t + 6;)) + €, where: parametric manual * GBST offers high accuracy but at higher computational cost.
" 0; is the individual specific noise _ SpECIflca:'[IOH * Landmarking enables flexible use of ML models with TDCs,
" € ~N(0,1) if high noise is enabled RS l’;eseemble R Voderate but care must be taken at later timepoints due to sample
* Additional Z noise parameters, optional GBST Boosted  Landmarking Automatic Low attrition.
* 3200 datasets were generated from a full factorial design (4 IEEs
factors x 200 replicates). Evaluation References

* Predictive performance assessed using Harrell’s C-index
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* Monte Carlo Error (MCE) was used to quantity precision
across 200 replicates per setting

* Event times were generated via inverse cumulative hazard
sampling

Ishwaran, H., Kogalur, U. B., Blackstone, E. H., & Lauer, M. S. (2008). Random survival forests. The Annals of Applied Statistics, 2(3). https://doi.org/10.1214/08-a0as169

Morris, T. P., White, I. R., & Crowther, M. J. (2019). Using simulation studies to evaluate statistical methods. Statistics in Medicine, 38(11), 2074-2102.
https:/ /doi.org/10.1002 /sim.8086

Tanner, K. T., Sharples, L. D., Daniel, R. M., & Keogh, R. H. (2020). Dynamic survival prediction combining landmarking with a machine learning ensemble: Methodology
and empirical comparison. Journal of the Royal Statistical Society Series A: Statistics in Society, 184(1), 3-30. https:/ /doi.org/10.1111/rssa.12611

Therneau, T. M., & Grambsch, P. M. (2013). Multiple Events per Subject. In Modeling Survival Data: Extending the Cox Model (pp. 169-229). essay, Springer.

Van Houwelingen, H. C. (2006). Dynamic prediction by landmarking in event history analysis. Scandinavian Journal of Statistics, 34(1), 70-85.
https://doi.org/10.1111/j.1467- 9469.2006.00529.x

* Censoring times were drawn uniformly between 2.5 and 5
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